Evaluation of rat tissue response to Guedes-Pinto and calcium hydroxide pastes by morphological analysis of repair in rat’s tooth socket

Karine TAKAHASHI
Paulo MALTEMPI FILHO
Robson Frederico CUNHA
Eloi DEZAN JUNIOR

ABSTRACT

In order to evaluate late biological response of two types of filling material of deciduous teeth, calcium hydroxide and Guedes-Pinto pastes, the implantation technique in rat sockets was employed. For morphological analysis, carried out after 7 and 28 days, 48 rats had their maxillary right central incisor removed, and a polyethylene tube implant containing one of the pastes was placed into the socket. On the 7th day, calcium hydroxide paste caused greater edema than Guedes-Pinto paste, and both types of material showed connective tissue with fibroblasts and blood vessels, with macrophages and lymphocytes. On the 28th day, calcium hydroxide paste had connective tissue with a large amount of macrophages and lymphocytes near the material, whereas in further areas, it had neofomed trabeculae. For the Guedes-Pinto paste, there were neoformed bone trabeculae nearby. The latter were found in larger amounts in areas further from the material surface. Guedes-Pinto paste caused less edema and provided less interference in the repair process.

Keywords: Deciduous tooth. Calcium hydroxide. Root canal therapy. Root canal filling material.
Introduction

Deciduous teeth are essential for the physical and functional development of a child, as they are involved in mastication, esthetics and function. For this reason, their maintenance in proper conditions until the moment of eruption of permanent teeth is the major objective of Pediatric Dentistry. Even with preventive measures in oral health being adopted, we still find nowadays decay affecting deciduous teeth, which most of the cases is irreversible.

A conservative therapy of which purpose is the maintenance of deciduous teeth with extensive carious lesions would be endodontic treatment. Although the indications and criteria for endodontic treatment success are the same for deciduous and permanent teeth, there are some differences in relation to endodontic treatment, such as: physiological resorption, nearness with the permanent germ, and morphology of the deciduous tooth.

The use of calcium hydroxide in obturation of root canals has yielded good results when applied in deciduous or permanent teeth. A large number of experimental articles available in the literature prove that calcium hydroxide is the material that leads to the highest percentage of biological sealing after obturation.16,24,26,27 Its major biological properties result from its dissociation into Ca+2 and OH- ions and its high pH, both of which produce antibacterial action, inductive of mineralization, as well as anti-inflammatory and hemostatic actions.15 This material also fulfill the requirements of biocompatibility, since it does not harm periapical tissues, preserves the integrity of pulp stump and speeds hard tissue deposition up.11 It is also resorbable and remains chemically active, until complete resorption at the periapical region.38

In the ‘80s, Guedes-Pinto et al15 disclosed a new endodontic technique for treatment of deciduous teeth, with final irrigation with Tergentol-Furacin and filling with a paste composed of Rifocort, iodoform and camphorated paramonochlorophenol.

Kramer et al19 and Brusco et al6 stated that Guedes-Pinto paste is the material most widely used for deciduous teeth filling in Brazilian Dentistry Schools. As for indirect pulp capping of deciduous teeth, calcium hydroxide is the most widely used material.30

Magalhães et al20 assessed the influence of this paste in rat socket repair. The group in which the paste was placed inside socket, after 30 days, results showed sped up socket repair in comparison to the control group. Faraco Junior10 comparatively analyzed deciduous teeth filled with calcium hydroxide and Guedes-Pinto pastes by means of histological exams. It was verified that both techniques had great chances of success in the periapical region, but the first one had better results when the inflammation process was considered.

Thus, the objective of this paper was to analyze the late biological response of two root filling materials of deciduous teeth, Guedes-Pinto and calcium hydroxide pastes, by means of morphological analysis after implantation technique in rat sockets.

MATERIAL AND METHODS

All procedures were guided by the Ethical Principles for Experiments on Animals and approved by the Ethics Committee on Animal Research (CEEA-FOA) with protocol #48/03.

For this study, 48 male rats (Rattus albinus, Wistar), 250 g in weight, were retrieved from UNESP School of Dentistry laboratory. The animals were kept in collective cages and fed throughout the entire pre-experimental period with a solid diet and water ad libitum, except for the first 24 hours after intervention, during which feeding was suspended, and the following periods until the animals were killed.

The rats were divided into six groups, with eight animals each: control groups 7 and 28 days, in which empty tubes were implanted; Guedes-Pinto paste groups 7 and 28 days; and calcium hydroxide groups 7 and 28 days.

The animals were divided in groups comprising five animals each for the surgical intervals of 3 and 6 hours, and according to the material to be tested. Firstly, pre-anesthetic medication with xylazine was used in the ratio of 25mg/kg via intramuscular application. Subsequently, general anesthesia was applied with ketamine, in the ratio of 50mg/kg.

Extraction of maxillary right incisor was then carried out with the aid of utensils adapted from Okamoto and Russo.28 After extraction and hemostasis, adapted polyethylene tubes were placed inside the socket, the containing materials to be tested (Fig 1).
Figure 1. Maxillary incisor extraction and implantation of polyethylene tubes with materials to be tested inside the tooth socket.
Tubes were cut with 1 mm of inner diameter and 1.8 mm of outer diameter, 3-mm in length. A total of 1 mm of the tube end was sealed with gutta-percha, and filled materials were placed into them.

The tubes were placed inside the socket immediately after extraction. The tube end containing the paste remained in contact with the apical portion of the socket, whereas the end sealed with gutta-percha faced the crown. A single implant was used for each animal. The tubes were taken to the apical portion of the sockets and the gingival mucosa was sutured.

Animals were sacrificed on the 7th and 28th day by inhalation of sulfuric ether inside a closed chamber. After the animals were sacrificed, right and left hemimaxilla were split out, and a cut was made tangently on the distal surface of molars. After being removed, tissues were stored in a 10% formaldehyde solution for 48 hours and then washed under running water for 12 hours. Specimens were decalcified in 17% EDTA solution, dehydrated, diaphanized and immersed in paraffin, so as to allow histological sections of the sockets to be performed longitudinally. The sections were 6-µm thick and were hematoxylin-and-eosin stained for histological analysis.

Results

Control 7 days (Fig 2)

Near the tube opening, an area occupied by neoformed connective tissue with a significant number of fibroblasts, macrophages and lymphocytes was found. In the apical area, neoformed connective tissue had a lower number of cells. Remaining clot with some macrophages was found at a few sites.

Control 28 days (Fig 3)

Near the material surface, it was possible to see neoformed bone trabeculae occupying a few areas. Connective tissue nearby had a lower number of vessels and some fibroblasts among rare lymphocytes and macrophages. Going deeper into the socket, there was connective tissue with a larger number of fibroblasts and neoformed bone trabeculae. Near the material surface, in other specimens, inflammatory infiltrate was found. Below it, connective tissue had a few vessels and some fibroblasts, macrophages and lymphocytes. A significant extension was found to be filled with thinner neoformed bone trabeculae.

Calcium hydroxide - 7 days (Fig 4)

Near the tube opening, in some cases, extensive areas were occupied by neoformed connective tissue with some fibroblasts and vessels. Also there was a large number of macrophages and lymphocytes. In other specimens, in the same region, there was a high number of macrophages and lymphocytes among some fibroblasts and vessels. Areas distant from the surface, in most of the cases, showed the same characteristics of superficial areas, evincing macrophages and lymphocytes among some fibroblasts. In one animal, the areas near and distant from the material were occupied by a high number of polymorphonuclear neutrophils, most of which were degenerating.

Guedes-Pinto paste - 7 days (Fig 5)

Near the tube opening, in all specimens, there were extensive areas occupied by connective tissue with a discrete number of fibroblasts and some vessels. Some macrophages and lymphocytes could be seen in the area. Deepest areas, in some cases, had the same characteristics found on the surface. In other cases, little neoformed bone trabeculae were found with osteoblasts on the edges.

Calcium hydroxide - 28 days (Fig 6)

Near the tube opening, in some cases, there was connective tissue with a high number of macrophages and lymphocytes among rare fibroblasts. Some blood vessels were seen in the same region. In other specimens, there was intense inflammatory infiltrate in restrict regions near the material surface, followed by connective tissue with a few fibroblasts and vessels. Far from the surface, there were thin neoformed bone trabeculae among differentiated connective tissue.

Guedes-Pinto paste - 28 days (Fig 7)

In all specimens, we could see that near the material surface, there were little neoformed bone
trabeculae besides differentiated connective tissue. In areas far from material surface, bone trabeculae were more developed. Connective tissue without differentiated bone was well developed, showing little vessels and a few fibroblasts.

Discussion

Calcium hydroxide paste presents with clinical as well as histological results well proved in the literature, by evaluating reactions in subcutaneous rate tissues, or in dog’s teeth, with formation of hard tissue barrier in cases of pulpotomy and deposition of hard tissue in the apical region.

Guedes-Pinto paste was introduced by guedes-Pinto et al to treat deciduous teeth sickened pulp. At present, it yields favorable clinical results. According to Michel, it is well tolerated by tissues and when implanted in rat subcutaneous tissues, shows total resorption within 90 days.

In this study, we found that Guedes-Pinto paste was more favorable to bone repair when compared to calcium hydroxide. Near the tube opening, after 28 days, there was neoformed bone trabeculae among well differentiated connective tissue. On the other hand, with calcium hydroxide, cronic inflammatory infiltrate was found on the 28th day.

These results agreed with the ones found by Gallottini, who used Guedes-Pinto paste as intra-alveolar medication and had the repair process enhanced. The author also suggests that this medication be used in immunosuppressed patients after extractions. Chedid found, after pulpotomies in rats, that Guedes-Pinto paste caused an initial inflammatory reaction that decreased after 14 days. Total remission of inflammation and formation of hard tissue bridge were found on the 28th day.

Rifocort medication is composed of corticosteroid (prednisolone), antibiotics (rifamycin) and propienglycol. The use of corticosteroid reduces inflammatory response, which explains the best results yielded with Guedes-Pinto paste in edemogenic testing. Rifamycin has bacteriostatic action by inhibiting protein synthesis, and affects mainly gram-positive bacteria. Adding the aforementioned drugs decreases inflammatory response, avoiding exposing the socket to infectious agents when using intracanal medication, thus causing Guedes-Pinto paste to speed up the process of repair.
Iodoform and camphorated para-monochlorophenol have antiseptic action. The first one acts by releasing iodine slowly, and its antiseptic action is discrete but persistent, decreasing the probability of late socket contamination. The second, when associated with camphora, has its toxicity decreased and bacteriostatic action increased.

Tagger and Sarnat\(^6\) assert that iodoform releases iodine in latent state, thus increasing bone repair in the region where it is applied, and preventing reinfection.

In this study, the calcium hydroxide group led to a delay in rat sockets repair, when compared to Guedes-Pinto paste group. These results are similar to the ones obtained by Gallottini,\(^1\) Ranly and Garcia-Godoy.\(^2\)

Biocompatibility tests of Guedes-Pinto paste show that it leads to intense migration of inflammatory cells, specially macrophages,\(^7,21\) due to the presence of iodoform, which is easily resorbed, and the consistency of the paste, which does not hinder phagocytosis. It is known that this cells contribute to repair process, particularly as a result of phagocytosis and their ability to remove toxic products from an a damaged area. The use of corticosteroid combined with antibiotics decreases inflammatory response.\(^21\)

Praetzel\(^29\) found that Guedes-Pinto paste has bacteriostatic effect over some microorganisms: Streptococcus mutans, Staphylococcus aureus and epidermidis, Escherichia coli e Enterococcus faecalis.

Faraco Junior\(^10\) found that there was no statistically significant difference between Guedes-Pinto and calcium hydroxide pastes, in relation to acute inflammatory reaction. Guedes-Pinto paste showed more intensively chronic inflammation.

Barroso\(^2\) compared results obtained with Guedes-Pinto paste and Calen paste, and found that Calen paste showed better histopathological results in all inflammatory response events. In some specimens treated with Guedes-Pinto paste, there was bone resorption, which the author affirms being due to camphorated para-monochlorophenol action.

Although both materials caused some inflammatory response until the period of 28 days (evaluated in this experiment), we believe that both are well indicated as filling materials of deciduous root canals, mainly because they are well tolerated, allow bone repair and do not interfere in resorption of deciduous roots.

Conclusion

» On the 7th day, both materials had similar characteristics.

» On the 28th day, Guedes-Pinto groups had neoformed bone trabeculae along the material surface, and in greater number in areas far from the material surface.

» On the 28th day, calcium hydroxide paste groups had connective tissue rich in fibroblasts, vessels, macrophages and lymphocytes near the tibe opening, and neoformed bone trabeculae in distant areas.

» Guedes-Pinto paste had less interference in the repair process than calcium hydroxide paste.

References

