Do root canal sealers lead to cancer? How can we find out?

Nicole Gonçalves Lima¹
Mariana TREVIZAN¹
Fabricio Kitazono de CARVALHO²
Paulo NELSON-FILHO³
Alberto CONSORO⁴

DOI: http://dx.doi.org/10.14436/2358-2545.6.1.011-014.end

ABSTRACT

Root canal sealers can be made with calcium hydroxide, zinc oxide and eugenol, glass ionomer, resin associated with methacrylate or silicone. They should be subjected to investigation on their potential for genotoxic and mutagenic effects before being launched into the specialized market, since such properties are part of the biocompatibility concept. In the present study, test modalities and the concepts of genotoxicity, mutagenicity and carcinogenesis are highlighted.

Keywords: Root canal sealing material. Micronucleus test. Comet assay. Biocompatible material.

How to cite this article: Lima NG, Trevizan M, Carvalho FK, Nelson-Filho P, Consolaro A. Can root canal sealers induce cancer? How can we investigate that? Dental Press Endod. 2016 Jan-Apr;6(1):11-4. DOI: http://dx.doi.org/10.14436/2358-2545.6.1.011-014.end

¹ Graduate students in Pediatric Dentistry, Universidade de São Paulo, School of Dentistry (FORP-USP), Ribeirão Preto, São Paulo, Brazil.
² Professor of Pediatric Dentistry, Universidade de São Paulo, School of Dentistry (FORP-USP), Ribeirão Preto, São Paulo, Brazil.
³ Full Professor of Pediatric Dentistry, Universidade de São Paulo, School of Dentistry (FORP-USP), Ribeirão Preto, São Paulo, Brazil.
⁴ Full professor of Pathology, Universidade de São Paulo, School of Dentistry (FORP-USP), Baau, São Paulo, Brazil and Graduate Program, Universidade de São Paulo, School of Dentistry (FORP-USP), Ribeirão Preto, São Paulo, Brazil.

» The authors report no commercial, proprietary or financial interest in the products or companies described in this article.

Submitted: 02/03/2016. Revised and accepted: 09/03/2016.

Contact address: Alberto Consolaro
E-mail: consolaro@uol.com.br

© 2016 Dental Press Endodontics

Dental Press Endod. 2016 Jan-Apr;6(1):11-4
Although it is not a carcinogenicity measure, mutagenicity is associated with cancer growth. Increased DNA damage, chromosomal breakage or loss, are important factors that can induce different types of cancer to grow. The process of carcinogenesis results from accumulation of genetic lesion/damage or mutations.

The most significant cancer-related mutations occur in genes controlling cell proliferation, also known as proto-oncogenes, and tumor suppressor genes. Additionally, they result in uncontrolled growth/proliferation typical of malignant cells. Furthermore, uncontrolled genes associated with the process of DNA damage repair are also involved, particularly when they are inactive, since they can lead to mutation, thus increasing the accumulation of significant molecular changes.

Malignant neoplasms are avoidable, and the efforts to do so focus on the identification of agents responsible for the former to occur. Taking the biocompatibility tests into account, genotoxicity and mutagenicity assays and trials have been given special attention, since they have been generally accepted as useful indicators of carcinogenicity.

Genotoxicity describes a property characterized by harmful action which damages the integrity of genetic information within a cell. Genotoxic substances can cause direct changes to the DNA or act indirectly, affecting the enzymes related to DNA replication and leading to mutations that may or may not cause cancer. Nevertheless, not all genotoxic substances are necessarily mutagenic.

In genotoxicity, in order to evince cell changes, in vitro laboratory tests are necessary. Such tests assess, for instance, the ability of different types of material to cause damage to the DNA in cells that are compatible with those that would potentially be in contact (in vivo) with tissues in the human body. Human lymphocytes are a great choice, as they circulate through all tissues at all times.

Among the genotoxicity and mutagenicity assessment tests, the following are highlighted: comet assay and micronucleus test, as they are highly sensitive at detecting low-level DNA changes and require a little amount of cells per sample, in addition to being versatile. At the laboratory, the comet assay (Fig 1) assesses the potential for causing DNA...
lesions as a result of genotoxicity; whereas the micronucleus test assesses the potential for transferring DNA changes to daughter cells, in other words, mutagenicity.

One of the methods used for carcinogenicity assessment is the DMBA-induction experimental model in Golden Syrian hamsters for oral chemical carcinogenesis. In 1993, a study published by our research group standardized the use of the aforementioned experimental model. From that point onwards, several authors have advocated the use of the model.

Whenever choosing the endodontic sealer to be clinically used, the ideal would be to look for the product printed directions or the scientific literature to find information on the sealer’s genotoxicity, mutagenicity and carcinogenicity.

Final considerations

Due to lack of studies published in the literature on the correlation between endodontic sealers and cancer, all types of dental material, especially those intended for permanent use, such as endodontic sealers, should be subjected to investigation on their potential for genotoxic and mutagenic effects before being launched into the market.
References


